
airsh

Page 1

SYNOPSIS
airsh :: AIR shell, a simple shell to control gpp-air-coremix.pd via OSC

This manual is formally a part of airsh but serves as a wider explanation of whole web audio/control
framework concieved to support the B-AIR project's AIR platform.

DISCLAIMER
This software is based on author's collection of gpp- patches and perl- based tools and has been
developed within the frame of the B-AIR project Creative Europe 2020-2023. The project has been
funded with support from the European Commission. This document content reflects the views only of
the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

HOW TO RUN airsh itself
airsh with no arguments : connect to localhost, no init script
airsh host init-script-path: connect to host and run initscript. In this case, host should be declared,
if the server is running locally, use "localhost"

PUREDATA gpp-air-coremix ELEMENT [server-side]
OSC-controlled puredata core mixer for AIR platform:

[gpp-air-coremix.pd <num.input.channels> <OSC.inaddress> <OSC.outaddress>]

Air core mixer will automatically connect to the <jackd> / <jacktrip> -provided channels via puredata
input [adc~] and output [dac~]. Although technically unlimited, within this setup (AIR platform) the core
mixer will provide stereo master output and a separate prelisten-bus (as an audio-premonitoring
option). The number of the input channels is arbitrary, set as a creation argument to the core mixer.
gpp-air-coremix will take the following creation arguments:

[=] Number of channels (creation arg)
[=] OSC receiver address and port (creation arg)
[=] OSC sender (backlink) port (creation arg)
[-] inlet1 : puredata [netreceive] control input (debugging purposes)
[-] inlet2 : direct mixer input (debugging purposes)

gpp-air-coremix and jacktrip
gpp-air-coremix is primarily intended to be used with Stanford CCRMA jacktrip audio networking
solution, based on Jack server, primarily in hub mode, following two possible audio-scheme
scenarios, which differ in network-bandwidth demands, quality of user experience and flexibility:

[full] good networking conditions: each client broadcasting their channels and receiving all but
themselves (jacktrip hubpatch mode 2). gpp-air-console, a separate part of air mixing system, serves
the purpose of monitoring and controlling this proces [#] and, above all, master mixing. In this
scenario, each client will mix their own master and prelisten bus (via gpp-air-console). In this
scenario, bandwidth issues may affect the very structure of mix(es).
.
[light] poorer networking conditions: each client broadcasting their own channels and receiving
minus-mix (all but theirselves) from the air mixer at the server. The Master Mixer receives master and
prelisten outputs (2x stereo). In this scenario, bandwidth issues may cause latency issues /
synchronization issues of the final mix and its feedback. In practice, this (light) option has been
proved very successful and reliable and also simpler to manage and configure at the server.

Links, explaining the context:

[OSC protocol] https://ccrma.stanford.edu/groups/osc/index.html

[jacktrip] https://ccrma.stanford.edu/software/jacktrip/

airsh

Page 2

[jacktrip] https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/

[jacktrip modes]
https://www.haven2.com/index.php/archives/jacktrip-hub-mode-server-options

[jack server] https://jackaudio.org/

.

WHO CAN CONNECT
[jacktrip] Any client that can run and make use of CCRMA Jack / jacktrip can join. According to our
pre-testing even connection via modern smartphones works decently. Jack / jacktrip is free software
solution. [all open-source software]
.
[gpp-air-console] Any client that can run full installation of puredata 0.51+ [open-source software]
.
[airsh] Any client that can run Perl programming language v5.28 or higher
https://www.perl.org/. Air shell is actually a simple OSC sender so it can be easily
implemented in different software environments. All processing is done by gpp-air-coremix.
.

CONNECTIVITY
A channel input can be connected either MONO or STEREO. Currently, there's no option to recognize
whether the jack has been mono or stereo connected within PD, so only manual option remains:

<ch> mono : set selected channels into mono mode
<ch> stereo : set selected channels into stereo mode
mono : shortcut to set mono mode globally
stereo : shortcut to set stereo mode globally

IMPORTANT A mono wire should be connected to both stereo inputs in order to assure proper
operation.

A stereo/mono led indicator on the top of each channel fader shows the stereo/mono state.

CONTROL WORKFLOW
airmix and airmon control and monitoring OSC streams

*** client | user action->[airsh or a midi mixer controller connected via gpp-air-midisender]

[gpp-air-console]->user perception | client ***

[-]
airsh [air shell], though text-based, allows for targeted and complex multi- controller operation,
such as addressing complex spans of channels, describing complex ramps for controllers and
triggering gadgets such as player / recorder ([#] more to come in future). This functionality
(conceptually) transcends simple physical-faders-and-knobs operating mode, although, of
course, will always represent 'a different kind of game'. The combination of both, external
physical controller and air shell might represent a win-win combination in controlling different
cases and situations during live mixing.

[-]
gpp-air-midisender is actually a simple midi frontend talking to gpp-air-coremix sitting at
server-side. It can be set up to control any parameters, basic or high resolution faders/knobs
(nrpn).

airsh

Page 3

[-]
gpp-air-console / gpp-air-iconsole is bi-directionally connected to gpp-air-coremix and
gpp-air-midisender slaves to gpp-air-console. All the crucial init parameters such as number
of channels are automatically synchronized if changed on the server. The i-console version is an
interactive version of the console and provides mouse-mixing gui (via Puredata), developed to
enhance awareness of the non/synchronicity between the action-herenow and the remote result.
The gpp-air-coremix server gui (if enabled) also follows the same (interactive) model, where the
action and effect are represented with separate controllers.

.

PUREDATA gpp-air-console ELEMENT [client-side]
[gpp-air-console.pd <OSC.inaddress> <OSC.outaddress>]

[=] OSC receiver address and port (creation arg)
[=] OSC sender (backlink) port (creation arg)
[-] inlet1 and outlet1 for bi-directional communication with the optional gpp-air-midisender at the
client side

PUREDATA gpp-midisender ELEMENT [client-side]
[-] inlet1 : input for gpp-air-console commands [connected to console's outlet1]
[-] inlet2 : midi setup - in
[-] outlet1 : number of channels and input address/port monitoring state
[-] outlet2 : gpp-air-console init-bang (querying server for crucial parameters such as number of
channels and server-receive OSC addres [connected to console's inlet1]
[-] outlet3 : midi setup - out

AIRMIX :: AIR CORE MIXER OSC COMMAND PROTOCOL
CHANNEL ADDRESSING

The structure of the OSC message is:

/airmix/<channel>/<controller> argument(s)

where channel =

master (in short: m)
prelisten | preunmute (in short: p pu)
<channel> | <channel_span> | <channel_selection_alias> - see CHANNEL_SPAN AND
CHANNEL_ALIASING

MONITORING
<ch> mon / <ch> nom

local per-channel monitoring; provides a pd gui window for each separate channel in the selected
span (server-side).

mix / xim
show whole mixer-monitor in a single pd window. mixer-monitor is a gui element directly rendered by
the server and is intended for direct monitoring on the server side.

con / noc
inform remote client (gpp-air-console user) to show or hide console gui window (a remote version of
mixer-monitor in a single pd window)

airsh

Page 4

CONTROLLERS
master|m fader|f|level <airliner_vector>

send airliner_vector to a master fader (both channels)

master|m lfader|rfader|left|right <airliner_vector>
send airliner_vector to a master fader (separate channels)

<ch> fader|f <airliner_vector>
send airliner_ector to a separate channel's faders

* faders are dynamic. a ramp can be interrupted with a new ramp at any point and will continue to flow
from that point on. Airliner vector curves will scale up/down to adapt to the height of the new window
to cover.

<ch> pan|p <airliner_vector>
send an airliner_vector to a separate channel pan

* NOTE master has no pan but both faders /stereo/ instead

AIRLINER_VECTOR
is managed by gpp-airliner~.pm. Airliner can be bound to any mixer param, currently it controls faders
and panning

it will accept 1 - 4 input parameters:

<value_to_reach [rms 0-1]> <time_of_operation [ms]>? <curve [string - see below]>? <initial
delay [ms]>?

where only the first parameter, <value_to_reach [rms 0-1]>, is compulsory. The other three, if
omitted, will default to:

<time_of_operation [ms]> defaults to 'jump' micro-fader time (50 ms)
<curve [see]> defaults to 'lin' or 'linear'
<initial delay [ms]> defaults to 0

Currently available curves:

jump micro-fader (50ms) linear curve
lin linear
sin sinusoidal (soft)
hsin half-sinusoidal (equal power)
log logarithmic, hard neck
pow power (exponential), slow sudden attack

<airliner_vector> examples
0.9 => jump to 0.9
0.422 7500 => slide to 0.422 in 7.5 seconds
1 4230 sin => slide to 1 in 4.23 seconds following sinusoidal curve
0.5 7600 pow 2000 => slide to .5 in 7.6 seconds following power curve, but start after 2 seconds from
now

AUDIO PRODUCTION / PROCESSING TOOLS
PLAY

<ch> play <file*>

Play a file (wav,aiff)

airsh

Page 5

<ch> play <file> <hh:mm:ss.uuu>

Play a file from the selected timing on

<ch> play <file> <hh:mm:ss.uuu> <hh:mm:ss.uuu>

Play a file from the selected timing to the selected end

<ch> play <file> <hh:mm:ss.uuu> <hh:mm:ss.uuu> +<hh:mm:ss.uuu>

Play a file from the selected timing to the selected end with the selected +delay. Note that the player
/ looper delay parameter should be marked with +

<file*> can be either a filename in connection with current working directory (see cd / dir
directives) or an absolute path

<ch> wplay <same arguments as play>

play a file with waitmute enabled. Initially, the recording is muted while being played and it will
unmute the moment that the wait-unmute condition is met (=a moment of silence). therefore, the
apperance of the sonic matter will be 'organic' = not forefully cut.

set wmtime <milisecs>

set wmtime - required time of relative silence between sound events to trigger waitmute / waitunmute.

set wmthreshold <-dB>

threshold of recognition what means 'relative silence' using -dB scale (-100 to 0 dB).

<ch> stop

Stop current playing session at channel(s) <ch>

<ch> wstop

stop the file with waitmute enabled. The stop directive will wait till the wait-unmute condition is met.
so the stopping will look organic, but may not happen at the very moment of execution of the
command.

<ch> wclip <same arguments as wplay / play> [**WARNING: STILL FLIMSY!!]

Auto clipper, based on waitmute system.

wclip uses the same timing parameters as play command. The timings are rather arbitrary, though,
and determine only the timing-frame within which the waitmute system will operate (= initial wplay
start splaying at the timing1 and the timing2 will end playing anyway, even if the waitmute condition
hasn't been met yet).

set wctime <milisecs>

set wctime - required minimal duration of non-silence segment [> wmthreshold dB] to recognize the
clip existence and trigger the wstop chain.

LOOP
<ch> loop <file>

Loop whole file

<ch> loop <file> <hh:mm:ss.uuu> <hh:mm:ss.uuu>

Loop file clip from selected timing to selected timing

<ch> loop <file> <hh:mm:ss.uuu> <hh:mm:ss.uuu> +<hh:mm:ss.uuu>

Loop file clip from selected timing to selected timing with intermediate +delay

airsh

Page 6

<ch> stop

Stop current looping session at channel(s) <ch> immediately

<ch> deloop

stop playing when the current loop iteration finishes

<ch> unwind

release the loop and play the sample till the end

RECORD
<ch> record <file>

Record to file

<ch> record <file> <hh:mm:ss.uuu>

Record to file after initial +delay

<ch> record <file> <hh:mm:ss.uuu> <hh:mm:ss.uuu>

Record to file after initial lead-in a lenght long clip. The second figure being interval length. Timing
display will change color to red when the recording actually starts.

<ch> stop

Stop current recording session at the addressed channel

OTHER
gpp-playhed will be added in future to enable complex manipulations of PLAY function (speed
change, different ways of oscillating ramps, granulation/heartbeat etc...) [#] Performance-sensitive,
will have to be tested in terms of mass channel addressing and potentially heavy monitoring
OSC-traffic.

CHANNEL_SPAN AND CHANNEL_ALIASING
<ch> refers to:

channel number : send to a selected channel
all : send to all channels
even : send to even-numbered channels
odd : send to odd-numbered channels
selection span : send to a selection span which consist from '-' delimited ranges and ',' delimited
lists, for instance 1,3,5-7

GLOBAL AND PER-CHANNEL COMMANDS
solo, mute

<ch> solo : set the channel 'solo' : set corresponding mutes and also send setsolo boolean signal
<ch> unsolo | us : set the channel 'not solo' : set corresponding mutes and also send setsolo
boolean signal
master mute | m : mute master channel (monitored via setmute boolean)
<ch> mute | m : mute selected channel (processed and monitored via setmute boolean)
master unmute | u | um : mute the master channel (monitored via setmute boolean)
master lunmute | lu : mute left master channel (monitored via setlmute boolean)
master runmute | ru : mute right master channel (monitored via setrmute boolean)
<ch> unmute | u : mute selected channel (monitored via setmute boolean)

airsh

Page 7

<ch> setmute <boolean> : set mute value (monitoring: /airmon/etc/<ch>/setmute <boolean>)
master setlmute <boolean> : set l-master mute value (monitoring: /airmon/etc/master/setlmute
<boolean>)
master setrmute <boolean> : set r-master mute value (monitoring: /airmon/etc/master/setrmute
<boolean>)
mutelock directive is machine-generated and controls the second mute layer during solo operations

NOTE: solo also operates on complex spans, for instance 1-3,7 will set solo the corresponding
channels.

solo and presolo switches policy
solo and presolo switches do the following:

solo or a group of solo commands (represented by a complex channel span will grab the mixer,
disabling the rest of channels. If these are already muted, they will stay muted. If not, they will be
solomuted (= mechanically locked to mute-state). If yes, they will remain muted, but an attempt to
unmute them will put them into solomuted state.
solo-ed channels can be muted/unmuted at will
Any channel can be either added to or removed from the solo span.
When the last solo channel is disabled, all solomuted channels will return to the previous state,
either muted or unmuted.
same policy applies on prelisten bus solo (presolo)

prelisten bus
ch prelisten | pl: add the channel to the pre-listening bus (separate prelisten monitoring audio port)
ch premute | pm: remove the channel from the pre-listening bus (separate prelisten monitoring audio
port)
ch presolo | ps: set the channel as pre-listening solo : adjusts all premute values and also sends
setpresolo boolean to the corresponding channel(s)
ch unpresolo | ups: set the channel as pre-listening solo : adjusts all premute values and also
sends setpresolo boolean to the corresponding channel(s)
ch setpremute : boolean directive (fit for monitoring: /airmon/etc/<ch>/setpremute <boolean>)
ch setsolopremute : machine generated solomute directive on presolo bus

waitmute | wm, waitunmute | wu
waitmute or wm performs an ordinary <mute> command, but before it does it waits for a condition to
be fulfilled: the post-fader (and pre-mute) output of the track (or both tracks of a stereo) in question
will have to become 'silent', with env~ value < 10.
waitunmute or wu performs an ordinary <unmute> command, but under the same condition than
waitmute
NOTE if the post-fader output level of the track is below the env~ treshold (< 10) waitmute and
waitunmute function similarly to mute and unmute

other globals
human | nonhuman : set OSC input policy. nonhuman will: 1) not dereference complex spans (only
per-channel or global addressing remains) and 2) treat all timing arguments as miliseconds (not
hh:mm:ss.msc format). human reverts this behaviour to normal (enabled complex spans and
hh:mm:ss.msc format)
panic : all channel faders set to 0
dir | cd : set global wavedata directory
ls : get global wavedata directory
trimfader : set trimfader time or trimfader type [#]

airsh

Page 8

centerpan : center all pans
fullout : set all faders to full
stereopan : set even-numbered faders to 0 and odd-numbered faders to 1 (receiving in full stereo
mode)
globepan : evenly distribute panning across panorama 0-1 accross all channels
lstracks : list numbers / configuration of input and output tracks through the rightmost outlet of
[gpp-air-coremix] element (via set message)
autosave : turn autosave (track names, mixer state, fader type) feature ON
noautosave : turn autosave (track names, mixer state, fader type) feature OFF
latency / latencystop : starts / stops measuring console latency (audio and control). The values are
reported to the control (3rd) outlet of the [gpp-air-coremix] element (via set message)
setmode : set server's monitoring mode (auto, mirror, coarse, off). See 'Two main server-side
monitoring modes' below.
setff : set server's fanning factor (distance between serial OSC monitoring request, somewhere
between 2 and 6, default 3) :: the serial monitoring requests (fader, pan) get distributed after the
following formula:

fader : (<ch> * <FF> * 2) msec DELAY
pan : (<ch> * <FF>) msec DELAY

alivesig start / stop : turn alive signals on / off. In the left bottom corner of the iConsole and Coremix
there are rectangular symbols iCo and Srv. If alivesig is running they will show the state of
connection:

iCo is green : iConsole is connected (server-side monitoring)
Srv is green : Server is connected (client-side monitoring)
both red in case of opposite

reset : erase autosave mixer data. By default, mixer has 2 sec interval autosave (autosave.txt).
Persistence survives mixer-restart and mixer-resize. This command resets all parameters.
fadertype lin / log : set linear or logarhytmic fader tipe. setfadertype boolean [NOT YET
IMPLEMENTED ON iCONSOLE!!!]

INTERNAL CLIENT- COMMANDS
These are client- (console) initiated

/airmix/cinit/ bang => client signalizing server their own loadbang and querying for initial parameters
such as number of channels, airdir etc. This request is handled separately on air-coremix input.

PRELISTEN BUS
Unless in the light audio-scheme scenario Prelisten bus itself will not be provided by the server. It
will be rendered by the client, gpp-air-console will render their own bus from all channels gathered via
jacktrip.

On the contrary, light mode [#] will provide prelisten bus, as well as master-mix.

ch prelisten preunmute | pl pu: add the channel to the pre-listening bus (separate prelisten
monitoring audio port) (monitoring: /airmon/etc/prelisten 1)
ch premute | pm: remove the channel from the pre-listening bus (separate prelisten monitoring audio
port) (monitoring: /airmon/etc/prelisten 0)
ch presolo | ps: set the channel as pre-listening solo (monitoring: /airmon/etc/presolo)
setprelevel : set the level of prelistening bus. Bound to 'jump' (50ms) ramp, not gpp-airliner. This
know is per-ch only. There is no master volume. Available via /airmon/etc/[ch]/setprelevel

airsh

Page 9

AIRMIX EXAMPLES [broadcast by the user/client sender such as airsh]
MASTER

/airmix/master/lfader 1 : set left master fader
/airmix/master/rfader 0.235 : set right master fader
/airmix/master/fader 0.5 : set both master faders

CHANNELS
/airmix/3/fader 1 : set fader #3
/airmix/3-5,7/fader 1 : set faders #3,#4,#5 and #7
/airmix/odd/fader 1 : set odd faders
/airmix/all/fader 1 3000 sin : start all faders' ramp to 1, 3000 ms, sinusoidal curve
/airmix/even/pan .5 6000 pow : start even pans' ramp to .5, 6 sec, power curve
/airmix/4,5/pan 0 4000 log 6234 : start channel's 4 and 5 pan ramp to 0 in 4 s, logarhytmic curve, after
6,234 sec delay
/airmix/even/play test.wav : play file test.wav on even channels
/airmix/even/play test.wav 0:05 : play file test.wav on the even channels from 0:05 to the end
/airmix/even/play test.wav 0:05 : play file test.wav on the even channels from 0:05 to the end
/airmix/1-4/loop test.wav 0:20 0:22.123 +0:03.120 : loop file test.wav on channels 1-4 clipped at 0:20
to 0:22.123 with 0:03.120 delay/gap
/airmix/3/record myrecording.wav 0:25 : record to myrecording.wav after 0:25 delay (with pre-count)

CHANNEL- AND GLOBAL- ALIASES
/airmix/odd mute : mute odd channels
/airmix/3,4-5 solo : solo channels 3,4 and 5
/airmix/panic : panic (turn all faders down)
/airmix/ls : get info about the server audio storage directory
/airmix/trimfader : set trimfader time and type
/airmix/centerpan : center all pans
/airmix/stereopan : set all pans to stereo mode
/airmix/globepan : equidistant placing of all pans
/airmux/setmode : set server monitoring mode
(...)

AIRMON :: AIR CORE MONITORING OSC COMMAND PROTOCOL
MONITORING TACTICS

Serves dispatching information about the mixer state to all subordinated (remote) web client subjects.
While the data, dispatched on momentary basis, does not represent a problem regarding the OSC
traffic demands, all continuous data types, such as fader pan etc, represent a challenge. Air engine
will internally handle such types by the usage of signal-level streaming, therefore monitoring can be
done using 3 different tactics:

A request : whole request (for instance: fader .5 3000 sin 6000) is transfered (copied from the airmix
OSC input) to the web clients and clients themselves will take care about rendering itself, from
begining to end. Not only gpp-airliner directive, but also timer requests can be given this way.
B snapshot : current state of controller transferred on periodical basis (metronome pulse).
Intermediate request data is sent using relatively low frequency in order to avoid OSC wire overheads
C contour : this tactics is actually a modification of snapshot tactics, but will only send snapshot to
the client(s) when RF (request_fulfilled) signal on the respected controller is broadcast (this is called
VR (value_reached), also provided by gpp-airliner~). So instead of metronome pulse, the initiative for

airsh

Page 10

broadcasting snapshot is based on reaching controllers' border states. All intermediate request data
is ignored. This tactics alone can be used for low bandwidth cases, but also to complement tactics A
and B. With the A tactics, it can help assure that the final state is obeyed regardless of potential
server/client desync. With the B tactics it can assure that the border state information is delivered
exactly in time, even if the server's snapshot heartbeat is low.

OSC CONTROLLER MAP
MONITORING TACTICS:

A. REQUEST
/airmon/request/<ch>/<controller> <request params>
any kind of user-request as such, copied directly from the OSC input for each respective
controller, such as:
/airmon/request/<ch>/fader <airliner~ params>
/airmon/request/<ch>/pan <airliner~ params>

_

A2. VIRTUAL REQUEST
A request assembled by the server engine (not passed by the user) in order to encapsule
bandwidth-demanding movement to be rendered by the client engine, such as:
/airmon/request/<ch>/timer/<type> [start|stop] [initial_timing_ms]?

display timer, where <type> can be "play" or "record"

_

B. SNAPSHOT
/airmon/snapshot/<ch>/<controller>
controller state at the very moment

C. CONTOUR
/airmon/contour/<ch>/...
separate reporting of basic border states :: the point of this tactics is to report some basic
params that the client (web or pd) can use to render their own movement. There are several
'contour handlers', such as:
... rf/<controller> => controller rf when reached (request fulfilled => reached destination
boolean (1=yes 0=not yet), fader or pan
... vr/<controller> => controller vr when rf reached (value reached => the actual destination
value triggered when reached, fader or pan, and also play, record (border states)
... ac/<controller> => controller ac (active) : play, record and such things => player is active
boolean (1=yes, 0=not)

*note difference between rf and ac switches: rf policy is negative (= positive when not active) while ac
policy is positive (= negative when not active).

ALL THE REST
All data that cannot be ranged into the 3 main monitoring tactics, will be passed via etc

/airmon/etc/<anyparam> => other data or switches, non policy-classified
/airmon/etc/<ch>/<anyparam> => other data or switches, non policy-classified : per-channel

for instance:

/airmon/etc/<ch>/filename/ => current file name distributed exactly before each play- or record-
request

airsh

Page 11

/airmon/etc/<ch>/mute => mute boolean for the selected channel
/airmon/etc/master/mute => master mute boolean (both channels)
/airmon/etc/master/rmute => master mute boolean (right channel only)
/airmon/etc/master/lmute => master mute boolean (left channel only)

DIRECT SYS PARAMS
System params (internal communication between gpp-air-coremix and gpp-air-(i)console, without user
interaction) are sent via /sys/ and /syscore/ controllers. /sys/ will deliver the messaga to the console
frontend (shell that envelopes console-core) and /syscore/ will to the console core itself. These
params is no thing the end user should be bothered with.

/airmon/sys/CHNUM/ => number of channels, required by gpp-air-coremix creation argument - the
console automatically resizes if the argument changes.
/airmon/syscore/AIRDIR/ => airdir path storage (path itself stored as text)
/airmon/syscore/SHOW/ [boolean] => show / hide console

TWO MAIN SERVER-SIDE MONITORING MODES BASED ON DIFFERENT MONITORING
TACTICS

OFF :: monitoring disabled
MIRROR and COARSE :: implementing contour and snapshot tactics:

MIRROR : use both tactics => high bandwidth and low client capacity; will report border states
and intermediate snapshots according to network capacity (tunable). Contour skeleton is used
to prevent possible timing-based anomalies, especially with extremely lo frequency monitoring
heartbeat.
COARSE : use only contour tactic => low bandwidth and low client capacity; will only report
border (crucial) states.

AUTO :: use request and snapshot tactics => client themselves will render events; this is only safe
when client is capable of running puredata console. Suitable for very low web bandwidth. Contour
skeleton is used to prevent possible timing-based anomalies.

Server can be set to either mode in terms of communicating with its console(s):
/airmix/setmode mirror or airsh setmode mirror :: set mirroring mode (contour + snapshot)
/airmix/setmode coarse or airsh setmode coarse :: set mirroring mode with only contour
tactics enabled
/airmix/setmode auto or airsh setmode auto :: set autonomous mode (all rendering based on
request tactics data vectors)
/airmix/lsmode :: list currently selected monitoring mode

AIR MIXER CONFIG FILES
/var/air/data/mixer/airdir.txt - air current working directory
/var/air/data/mixer/state/autosave.txt - mixer params state
/var/air/data/mixer/state/autosave_chname.txt - fader type and channel names
/var/air/data/airsh/airsh_log.txt - list of recently cast airsh commands

AIRSH EXAMPLES EXAMPLES> [broadcast by user/client]
airsh m fader 1 2000 sin => fade complex curve

airsh 1 fader .3 4000 log 2000 => fade after delay

airsh play file.wav 0:12.345 0:15.012 +1:0.300 => play a clip after delay

airsh loop file.wav 0:12.345 0:15.012 +1:0.300 => loop a clip after delay

airsh

Page 12

airsh rec 0:10 0:15 => record 15 seconds after 10 seconds delay

AIRMON PROTOCOL EXAMPLES [broadcast by gpp-air-coremix/server]
/airmon/request/master/lfader/ 1 3000 sin

/airmon/request/master/rfader/ 1 3000 sin

/airmon/request/master/fader/ 1 3000 sin

/airmon/snapshot/1/fader .346567

/airmon/contour/master/rf/lfader 1

/airmon/contour/master/rf/lfader 1

/airmon/contour/3/ac/player 1

/airmon/contour/1/timer/player start 3543 down

/airmon/contour/1/timer/player stop

/airmon/contour/3/timer/recorder start 0 up

AUTHOR
Gregor Pirs <gregor.pirs@guest.arnes.si>

VERSION
[27-2-2024] | gpp-air-coremix.pd 1.6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

